New Hetero- and Homo-metallic Dihydroxo-bridged Dinuclear Complexes of Cobalt(III) and Chromium(III): Synthesis, Spectroscopy and Crystal Structures \dagger

Takashi Fujihara, Akira Fuyuhiro and Sumio Kaizaki *
Department of Chemistry, Faculty of Science, Osaka University, Toyonaka, Osaka 560, Japan

Abstract

Sixteen new unsymmetrical hetero- and homo-metallic dinuclear complexes [$(\mathrm{nta}) \mathrm{Cr}(\mu-\mathrm{OH})_{2} \mathrm{ML}_{4}$]Cl- nitrilotriacetate, en = ethane-1,2-diamine, chxn = trans-cyclohexane-1,2-diamine, tn = propane-1,3diamine, amp $=2$-aminomethylpyridine, trien $=$ triethylenetetramine, bipy $=2,2^{\prime}$-bipyridine and phen $=$ 1,10-phenanthroline] were synthesized and characterized by elemental analysis, UV/VIS absorption, circular dichroism and ${ }^{2} \mathrm{H}$ NMR spectra, acid strengths of bridging hydroxide, magnetic properties and crystal structures. The crystals of $\left[(n t a) \mathrm{Cr}(\mu-\mathrm{OH})_{2} \mathrm{M}(\mathrm{tn})_{2}\right] \mathrm{Cl} \cdot 1.5 \mathrm{H}_{2} \mathrm{O}(\mathrm{M}=\mathrm{Co}$ or Cr$)$ are isomorphous and belong to the monoclinic system, space group $C 2 / c, Z=8$, with $a=16.384(2), b=14.660$ (2). $c=18.874(2) \AA, \beta=110.77(1)^{\circ}$ and $a=16.465(3), b=14.727(2), c=19.057(2) \AA \AA, \beta=110.28(1)$ for $M=C o$ and Cr respectively. The crystal structure of $\left[(n t a) \mathrm{Cr}(\mu-\mathrm{OH})_{2} \mathrm{Cr}(\mathrm{phen})_{2}\right] \mathrm{Cl} \cdot 7 \mathrm{H}_{2} \mathrm{O}$ was found to be triclinic with space group $P \overline{1}, a=15.79(1), b=18.04(1), c=12.77(1) \AA,{ }_{\alpha}=96.39(8)^{\circ}$. $\beta=102.23(7), \gamma=102.83(7)^{\circ}$ and $Z=4$. The structural parameters of the bridging moiety around each metal ion were almost the same as in the corresponding symmetrical dinuclear species. The ${ }^{2} \mathrm{H}$ NMR spectra of $\left[\left(\left[{ }^{2} \mathrm{H}_{6}\right] \mathrm{nta}\right) \mathrm{Cr}(\mu-\mathrm{OH})_{2} \mathrm{ML}_{4}\right]^{+}$reflected the stereochemistry of the nta chelate rings and the $\mathrm{M}-\mathrm{N}$ (of L_{4}) bond properties.

Hydroxide-bridged chromium(III) or cobalt(III) dinuclear complexes have been widely investigated from magnetic, spectroscopic and structural points of view. ${ }^{1-4}$ The heterometallic dinuclear complexes which contain two different metal cations bridged by hydroxide ions are also of interest. Some heterometallic di- or tetra-nuclear complexes containing chromium(III) and metal(II) cations bridged by hydroxide and/or acetate were studied in detail. ${ }^{5}$ The dinuclear complex $\left[(\mathrm{en})_{2} \mathrm{Cr}(\mathrm{OH})_{2} \mathrm{Co}(\mathrm{en})_{2}\right]^{4+} \quad$ (en $=$ ethane-1,2-diamine) was synthesized by solid-state dehydration of a $1: 1$ mixture of Λ-cis- $\left[\mathrm{Cr}(\mathrm{en})_{2}(\mathrm{OH})\left(\mathrm{H}_{2} \mathrm{O}\right)\right]\left[\mathrm{S}_{2} \mathrm{O}_{6}\right]$ and Δ-cis- $\left[\mathrm{Co}(\mathrm{OH})\left(\mathrm{H}_{2} \mathrm{O}\right)\right.$ (en) $\left.{ }_{2}\right]\left[\mathrm{S}_{2} \mathrm{O}_{6}\right]$. ${ }^{6}$

In this paper, we describe the detailed synthesis and characterization of new hetero- and homo-metallic dihydroxide-bridged dinuclear complexes with general formula $\left[(\right.$ nta $\left.) \mathrm{Cr}(\mu-\mathrm{OH})_{2} \mathrm{ML}_{4}\right] \mathrm{Cl} \cdot n \mathrm{H}_{2} \mathrm{O} \quad\left[\mathrm{M}=\mathrm{Co}^{\text {III }}\right.$ or $\mathrm{Cr}^{\text {III }}$; nta $=$ nitrilotriacetate; $\mathrm{L}_{4}=\left(\mathrm{NH}_{3}\right)_{4},(\mathrm{en})_{2},(\mathrm{tn})_{2}(\mathrm{tn}=$ propane-1,3diamine), $\quad\{(R, R) \text { chxn }\}_{2} \quad(\mathrm{chxn}=$ trans-cyclohexane-1,2-diamine), trien (triethylenetetramine), $(\mathrm{amp})_{2}(\mathrm{amp}=2$-aminomethylpyridine), (bipy) ${ }_{2}$ (bipy $=2,2^{\prime}$-bipyridine) or $(\text { phen })_{2}$ (phen $=1,10$-phenanthroline) $]$. The crystal structures of heterometallic $\left[(\mathrm{nta}) \mathrm{Cr}(\mathrm{OH})_{2} \mathrm{Co}(\mathrm{tn})_{2}\right] \mathrm{Cl} \cdot 1.5 \mathrm{H}_{2} \mathrm{O}$ and of $[(\mathrm{nta})$ $\left.\mathrm{Cr}(\mathrm{OH})_{2} \mathrm{Cr}(\mathrm{tn})_{2}\right] \mathrm{Cl} \cdot 1.5 \mathrm{H}_{2} \mathrm{O}$ and $\left[(\mathrm{nta}) \mathrm{Cr}(\mathrm{OH})_{2} \mathrm{Cr}(\text { phen })_{2}\right] \mathrm{Cl} \cdot$ $7 \mathrm{H}_{2} \mathrm{O}$ have been determined and are compared with those of symmetrical homometallic dihydroxide-bridged dinuclear complexes. The ${ }^{14} \mathrm{~N}$ NMR spectra of the $\mathrm{M}(\mathrm{en})_{2}$ moiety of $\left[(\mathrm{nta}) \mathrm{Cr}(\mathrm{OH})_{2} \mathrm{M}(\mathrm{en})_{2}\right]^{+}\left(\mathrm{M}=\mathrm{Cr}^{\mathrm{III}}\right.$ or $\left.\mathrm{Co}^{\mathrm{III}}\right)$ complexes have been reported. ${ }^{7}$

Experimental

Materials.-The precursor complexes $\mathrm{K}_{2}\left[\mathrm{Cr}_{2}(\mathrm{nta})_{2^{-}}\right.$ $\left.(\mathrm{OH})_{2}\right] \cdot 4 \mathrm{H}_{2} \mathrm{O},{ }^{8} c i s-\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{4}\left(\mathrm{H}_{2} \mathrm{O}_{2}\right]_{2}\left[\mathrm{SO}_{4}\right]_{3} \cdot 3 \mathrm{H}_{2} \mathrm{O},{ }^{9}[\mathrm{Co}-\right.$ $\left.\left(\mathrm{CO}_{3}\right)(\mathrm{en})_{2}\right] \mathrm{Cl},{ }^{10} \quad\left[\mathrm{Co}\left(\mathrm{CO}_{3}\right)(\mathrm{tn})_{2}\right] \mathrm{Cl},{ }^{11} \quad \mathrm{cis}-\left[\mathrm{CoCl}_{2}\{(R, R)-\right.$

[^0]chxn $\left.\}_{2}\right] \mathrm{Cl},{ }^{12}$ cis- $\alpha-\left[\mathrm{Co}(\right.$ trien $\left.)\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]\left[\mathrm{ClO}_{4}\right]_{3},{ }^{13} \quad$ cis- α-trans(py) $\left[\mathrm{CoCl}_{2}(\mathrm{mpa})_{2}\right] \mathrm{Cl} \cdot \mathrm{H}_{2} \mathrm{O},{ }^{14}\left[\mathrm{Co}\left(\mathrm{CO}_{3}\right)(\text { bipy })_{2}\right] \mathrm{Cl} \cdot 2 \mathrm{H}_{2} \mathrm{O},{ }^{15}$ $\left[\mathrm{Co}\left(\mathrm{CO}_{3}\right)(\text { phen })_{2}\right] \mathrm{Cl} \cdot 4.5 \mathrm{H}_{2} \mathrm{O},{ }^{15} \quad \mathrm{cis}-\left[\mathrm{CrCl}\left(\mathrm{H}_{2} \mathrm{O}\right)\left(\mathrm{NH}_{3}\right)_{4}\right]-$ $\mathrm{SO}_{4},{ }^{16} \quad c i s-\left[\mathrm{CrCl}_{2}(\mathrm{en})_{2}\right] \mathrm{Cl} \cdot \mathrm{H}_{2} \mathrm{O},{ }^{17} \quad c i s-[\mathrm{CrCl}(\mathrm{dmso})\{(R, R)-$ chxn $\left.\}_{2}\right] \mathrm{Cl}_{2} \quad\left(\mathrm{dmso}=\right.$ dimethyl sulfoxide), ${ }^{17} \quad$ cis- $\left[\mathrm{Cr}(\mathrm{tn})_{2}{ }^{-}\right.$ $\left.\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]\left[\mathrm{NO}_{3}\right]_{3},{ }^{18}$ cis- $\alpha-\left[\mathrm{CrCl}_{2}(\right.$ trien $\left.)\right] \mathrm{Cl} \cdot \mathrm{H}_{2} \mathrm{O},{ }^{19}$ cis- α-trans(py) $-\left[\mathrm{CrCl}_{2}(\mathrm{amp})_{2}\right] \mathrm{Cl},{ }^{20}$ cis- $\left[\mathrm{Cr}(\mathrm{OH})\left(\mathrm{H}_{2} \mathrm{O}\right)(\text { bipy })_{2}\right]\left[\mathrm{ClO}_{4}\right]_{2}{ }^{21}$ and cis- $\left[\mathrm{Cr}(\text { phen })_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]\left[\mathrm{NO}_{3}\right]_{3} \cdot 2 \mathrm{H}_{2} \mathrm{O}^{21}$ were synthesized by the reported methods and identified by elemental analysis and UV/VIS absorption spectra. All other materials were commercially available.

Preparation of Aqueous Solutions of $\left[\mathrm{ML}_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]^{3+}$.The aqueous solutions of diaqua complexes $\left[\mathrm{ML}_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]^{3+}$ were obtained from the corresponding precursor complexes by the following procedures except for the diaqua and aquahydroxo ones. The dichloro ones except cis- α-trans(py)$\left[\mathrm{MCl}_{2}(\mathrm{amp})_{2}\right] \mathrm{Cl}(2.5 \mathrm{mmol})$ were aquated by dissolving in water ($25 \mathrm{~cm}^{3}$) and stirring for 20 min at $60^{\circ} \mathrm{C}$. The cis- $\alpha-$ $\operatorname{trans}(\mathrm{py})-\left[\mathrm{MCl}_{2}(\mathrm{amp})_{2}\right] \mathrm{Cl}$ were aquated with moist $\mathrm{Ag}_{2} \mathrm{O}$ as described. ${ }^{20}$ The carbonato ones were aquated by dissolving in $1 \mathrm{~mol} \mathrm{dm}{ }^{-3} \mathrm{HClO}_{4}\left(25 \mathrm{~cm}^{3}\right)$.

Preparation of the $\left[(\mathrm{nta}) \mathrm{Cr}(\mathrm{OH})_{2} \mathrm{ML}_{4}\right] \mathrm{Cl} \cdot n \mathrm{H}_{2} \mathrm{O}$ Complexes $\mathbf{1 a - 8 a}$ and $\mathbf{1 b - 8 b}$.-To an aqueous solution ($25 \mathrm{~cm}^{3}$) containing $\left[\mathrm{ML}_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]^{3+}(2.5 \mathrm{mmol})$ was added solid $\mathrm{K}_{2}\left[\mathrm{Cr}_{2}(\mathrm{nta})_{2^{-}}\right.$ $\left.(\mathrm{OH})_{2}\right] \cdot 4 \mathrm{H}_{2} \mathrm{O}(0.84 \mathrm{~g}, 1.25 \mathrm{mmol})$ with stirring. The mixture was adjusted to pH 7 by adding $2 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{NaOH}$ solution. This was stirred for 30 min at $60^{\circ} \mathrm{C}$ (at $40^{\circ} \mathrm{C}$ for 1 a and 1 b). The reaction solution was cooled to room temperature and loaded on a column (SP-Sephadex C-25 cation exchanger, $40 \times 3 \mathrm{~cm}$ diameter). The column was washed with water and eluted by 0.2 $\mathrm{mol} \mathrm{dm}{ }^{-3} \mathrm{NaCl}$ solution. After washing with water the column gave only one band. The collected eluate was evaporated and desalted by adding methanol and ethanol. Finally, the crude complex was precipitated by adding ethanol and acetone. Recrystallization was carried out from water by adding ethanol and acetone. The crystals were washed with acetone and diethyl

Table 1 Analytical data, colours and yields of the $\left[(n t a) \mathrm{Cr}(\mathrm{OH})_{2} \mathrm{ML}_{4}\right] \mathrm{Cl} \cdot n \mathrm{H}_{2} \mathrm{O}$ complexes

				Analysis (\%) ${ }^{\text {b }}$		
	Complex	Colour	Yield (\%) ${ }^{\text {a }}$	C	H	N
1a	$\left[(\mathrm{nta}) \mathrm{Cr}(\mathrm{OH})_{2} \mathrm{Co}\left(\mathrm{NH}_{3}\right)_{4}\right] \mathrm{Cl} \cdot 3 \mathrm{H}_{2} \mathrm{O}$	Violet	65	14.70 (14.65)	5.35 (5.10)	14.25 (14.00)
2a	$\left[(\mathrm{nta}) \mathrm{Cr}(\mathrm{OH})_{2} \mathrm{Co}(\mathrm{en})_{2}\right] \mathrm{Cl} \cdot 2.5 \mathrm{H}_{2} \mathrm{O}$	Violet	75	22.50 (23.00)	5.50 (5.40)	13.10 (13.05)
3a	$\left[(\mathrm{nta}) \mathrm{Cr}(\mathrm{OH})_{2} \mathrm{Co}(\mathrm{tn})_{2}\right] \mathrm{Cl} \cdot 1.5 \mathrm{H}_{2} \mathrm{O}$	Violet	71	26.50 (27.30)	5.75 (5.60)	12.90 (13.15)
4a	$\left[(\mathrm{nta}) \mathrm{Cr}(\mathrm{OH})_{2} \mathrm{Co}\{(R, R) \mathrm{chxn}\}_{2}\right] \mathrm{Cl} \cdot 3 \mathrm{H}_{2} \mathrm{O}$	Violet	70	33.40 (33.50)	5.90 (5.85)	10.85 (10.90)
5a	$\left[(\mathrm{nta}) \mathrm{Cr}(\mathrm{OH})_{2} \mathrm{Co}(\right.$ trien $\left.)\right] \mathrm{Cl} \cdot 2.5 \mathrm{H}_{2} \mathrm{O}$	Violet	77	25.75 (25.70)	5.60 (5.50)	12.50 (12.40)
6a	$\left[(\mathrm{nta}) \mathrm{Cr}(\mathrm{OH})_{2} \mathrm{Co}(\mathrm{amp})_{2}\right] \mathrm{Cl} \cdot 2 \mathrm{H}_{2} \mathrm{O}$	Violet	73	34.80 (34.70)	4.55 (4.45)	11.30 (11.20)
7 a	$\left[(\right.$ nta $\left.) \mathrm{Cr}(\mathrm{OH})_{2} \mathrm{Co}(\mathrm{bipy})_{2}\right] \mathrm{Cl} \cdot 3 \mathrm{H}_{2} \mathrm{O}$	Brown	81	42.50 (42.30)	4.10 (4.10)	9.55 (9.40)
8a	$\left[\left(\right.\right.$ nta) $\left.\mathrm{Cr}(\mathrm{OH})_{2} \mathrm{Co}(\text { phen })_{2}\right] \mathrm{Cl} \cdot 2 \mathrm{H}_{2} \mathrm{O}$	Brown	80	47.10 (47.10)	3.70 (3.65)	9.15 (9.15)
1b	$\left[(\mathrm{nta}) \mathrm{Cr}(\mathrm{OH})_{2} \mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{4}\right] \mathrm{Cl} \cdot 2.5 \mathrm{H}_{2} \mathrm{O}$	Violet	68	15.20 (15.40)	5.30 (5.20)	14.35 (14.75)
2b	$\left[(\mathrm{nta}) \mathrm{Cr}(\mathrm{OH})_{2} \mathrm{Cr}(\mathrm{en})_{2}\right] \mathrm{Cl} \cdot 3.5 \mathrm{H}_{2} \mathrm{O}$	Violet	75	22.05 (22.00)	5.75 (5.85)	12.85 (12.65)
3b	$\left[(\mathrm{nta}) \mathrm{Cr}(\mathrm{OH})_{2} \mathrm{Cr}(\mathrm{tn})_{2}\right] \mathrm{Cl} \cdot 1.5 \mathrm{H}_{2} \mathrm{O}$	Violet	79	26.85 (26.90)	5.80 (5.85)	13.05 (13.05)
4b	$\left[(\mathrm{nta}) \mathrm{Cr}(\mathrm{OH})_{2} \mathrm{Cr}\{(\mathrm{R}, \mathrm{R}) \mathrm{chxn}\}_{2}\right] \mathrm{Cl} \cdot 3.5 \mathrm{H}_{2} \mathrm{O}$	Violet	72	33.10 (33.05)	6.65 (6.65)	10.70 (10.60)
5b	$\left[\left(\right.\right.$ nta) $\mathrm{Cr}(\mathrm{OH})_{2} \mathrm{Cr}($ trien $\left.)\right] \mathrm{Cl} \cdot 2 \mathrm{H}_{2} \mathrm{O}$	Violet	70	26.50 (26.50)	5.55 (5.50)	12.90 (12.90)
6b	$\left[(\mathrm{nta}) \mathrm{Cr}(\mathrm{OH})_{2} \mathrm{Cr}(\mathrm{amp})_{2}\right] \mathrm{Cl} \cdot 2.5 \mathrm{H}_{2} \mathrm{O}$	Violet	75	34.70 (33.80)	4.70 (4.60)	11.25 (10.95)
7b	$\left[(\right.$ nta $\left.) \mathrm{Cr}(\mathrm{OH})_{2} \mathrm{Cr}(\text { bipy })_{2}\right] \mathrm{Cl} \cdot 5.5 \mathrm{H}_{2} \mathrm{O}$	Green	79	39.80 (40.40)	4.55 (4.40)	9.05 (8.95)
8b	$\left[(\right.$ nta $\left.) \mathrm{Cr}(\mathrm{OH})_{2} \mathrm{Cr}(\text { phen })_{2}\right] \mathrm{Cl} \cdot 7 \mathrm{H}_{2} \mathrm{O}$	Green	85	42.50 (42.30)	4.50 (4.45)	8.25 (8.10)

${ }^{a}$ Based on chromium. ${ }^{b}$ Calculated values in parentheses.
ether and air dried. Analytical data, colours and yields of the dinuclear complexes are in Table 1.

Deuteriated Nitrilotriacetic Acid $\left[{ }^{2} \mathrm{H}_{6}\right] \mathrm{H}_{3} n \mathrm{ta}$:-The deuteriation was carried out by the method of Koine et al. ${ }^{8}$

Crystal Structure Determinations.-Crystals suitable for X-ray analysis of $\left[(\mathrm{nta}) \mathrm{Cr}(\mathrm{OH})_{2} \mathrm{M}(\mathrm{tn})_{2}\right] \mathrm{Cl} \cdot 1.5 \mathrm{H}_{2} \mathrm{O}(\mathrm{M}=\mathrm{Co}$ 3a or Cr 3 b) and $\left[(\right.$ nta $\left.) \mathrm{Cr}(\mathrm{OH})_{2} \mathrm{Cr}(\text { phen })_{2}\right] \mathrm{Cl} \cdot 7 \mathrm{H}_{2} \mathrm{O}$ 8b were obtained by slow evaporation of corresponding concentrated aqueous solutions. All measurements were made on a Rigaku AFC5R diffractometer with graphite-monochromated Mo-K α radiation ($\lambda 0.71069 \AA$) and the calculations were performed using TEXSAN ${ }^{22}$ in the Crystal Structural Center of the Faculty of Science, Osaka University. The unit-cell parameters were determined from 25 reflections in the range $20<2 \theta<30^{\circ}$. Three standard reflections were monitored every 100 and showed good stability. The data collection was carried out at $23 \pm 1^{\circ} \mathrm{C}$ using the $\omega-2 \theta$ scan method. Direct methods followed by normal heavy-atom procedures were used for structure analysis. The positional and thermal parameters were refined by block-diagonal-matrix least squares. Absorption and decay corrections were applied. All hydrogen atoms except for those of complex $\mathbf{8 b}$ were found in the Fourier-difference-maps and refined isotropically. Non-hydrogen atoms were refined with anisotropic thermal parameters except for the seven oxygen atoms of crystalline water $[\mathrm{O}(101)-\mathrm{O}(107)]$ and $\mathrm{Cl}(2)$ in complex 8 b which were refined isotropically. The crystallographic data for the three complexes are listed in Table 2.

Additional material available from the Cambridge Crystallographic Data Centre comprises H -atom coordinates, thermal parameters and remaining bond lengths and angles.

Measurements.-Absorption and CD spectra were recorded on a Hitachi 330 spectrophotometer and a JASCO J-500 spectropolarimeter, respectively at room temperature in aqueous solutions. Magnetic susceptibilities were measured on powdered samples of $\mathrm{Cr}^{\mathrm{III}}{ }_{2}$ complexes by using the Faraday method in the temperature range $5-300 \mathrm{~K}$. Corrections for diamagnetism were applied by use of Pascal's constants as described before. ${ }^{23}$ The pH measurements were carried out by using a Horiba F-7SS pH meter with a no. 6028 coupling electrode at $25^{\circ} \mathrm{C}$ and the ionic strength was $0.1 \mathrm{~mol} \mathrm{dm}^{-3}(\mathrm{KCl}$ aqueous solution). Acid dissociation constants were estimated by the method of Mønsted and Mønsted ${ }^{24}$ using pH measurements and absorption spectra. The uncertainty was
estimated at $\pm 0.1 \mathrm{p} K_{\mathrm{a}}$ unit. Deuterium NMR spectra were measured using a JEOL GSX-270 FT spectrometer with $\mathrm{C}^{2} \mathrm{HCl}_{3}(\delta 7.24)$ as external standard and downfield shifts defined as positive.

Results and Discussion

Preparation of the Complexes.-The analytical data shown in Table 1 do not exclude the possibility of hydroxoaqua-bridged aggregates with $\left[\mathrm{Cr}(\mathrm{nta})(\mathrm{OH})\left(\mathrm{H}_{2} \mathrm{O}\right)\right]^{-}$and $[\mathrm{ML}(\mathrm{OH})-$ $\left.\left(\mathrm{H}_{2} \mathrm{O}\right)\right]^{2+}$ as found in $\left[\left\{\mathrm{Cr}(\text { bipy })_{2}(\mathrm{OH})\left(\mathrm{H}_{2} \mathrm{O}\right\}_{2}\right]^{4+} .{ }^{25}\right.$ Since they did not separate on SP-Sephadex column chromatography they are not aggregates but dihydroxo-bridged complexes. This is confirmed by their magnetic properties and crystal structure analysis as described later.

Column chromatography of the reaction solution and elution with $0.2 \mathrm{~mol} \mathrm{dm}{ }^{-3} \mathrm{NaCl}$ aqueous solution gave only one band, $\left[(\mathrm{nta}) \mathrm{Cr}(\mathrm{OH})_{2} \mathrm{ML}_{4}\right]^{+}$. No symmetrical dinuclear complexes like $\left[\mathrm{Cr}_{2}(\mu-\mathrm{OH})_{2} \mathrm{~L}_{4}\right]^{4+}$ and $\left[\mathrm{Cr}_{2}(\mathrm{nta})_{2}(\mu-\mathrm{OH})_{2}\right]^{2-}$ were detected. Specific formation of the unsymmetrical $\left[(\mathrm{nta}) \mathrm{Cr}(\mathrm{OH})_{2} \mathrm{ML}_{4}\right]^{+}$dinuclear complexes occurs in these reactions. These complexes except for 1 a are so stable that there is no change in UV/VIS spectra for several days in aqueous solutions. Complex 1a decomposes relatively rapidly to the monomeric species.

The important factor in the formation of such stable unsymmetrical dinuclear complexes is supposed to be the intramolecular hydrogen bonds between non-bridging ligands. ${ }^{4}$ However, even the amp, bipy and phen complexes having no hydrogen atoms for intramolecular hydrogen bonding form stable $\left[(\mathrm{nta}) \mathrm{Cr}(\mathrm{OH})_{2} \mathrm{ML}_{4}\right]^{+}$. In addition, they are preferentially formed even in the present aqueous solutions in contrast with the solid-state formation of the heterometallic $\left[(\mathrm{en})_{2} \mathrm{Cr}(\mu-\right.$ $\left.\mathrm{OH})_{2} \mathrm{Co}(\mathrm{en})_{2}\right]^{4+} .{ }^{6}$ This is due to the facile formation of hydroxoaqua-bridged aggregates as intermediates by intermolecular hydrogen bonding and electrostatic attractions in aqueous solution at pH 7 . The results suggest that the latter forces also play an important role in the formation of these types of dinuclear complexes.

The geometrical and absolute configurations of the ML_{4} moieties in the precursor complexes are retained in the corresponding dinuclear complexes in view of the mild reaction conditions and simple reaction process: the bis(amp) complexes $\mathbf{6 a}$ and 6b are of the trans-(py) type, the trien ones (5a and 5b) are of the cis- α type, and the bis $[(R, R)$ chxn $]$ ones $4 \mathbf{a}$ and 4 b have the Δ absolute configuration.

Table 2 Crystallographic data for $\left[(n t a) \mathrm{Cr}(\mathrm{OH})_{2} \mathrm{M}(\mathrm{tn})_{2}\right] \mathrm{Cl} \cdot 1.5 \mathrm{H}_{2} \mathrm{O}(\mathrm{M}=\mathrm{Co} 3 \mathrm{a}$ or Cr 3 b$)$ and $\left[(\mathrm{nta}) \mathrm{Cr}(\mathrm{OH})_{2} \mathrm{Cr}(\mathrm{phen})_{2}\right] \mathrm{Cl} \cdot 7 \mathrm{H}_{2} \mathrm{O} 8 \mathrm{~b}$

	3a
Formula	$\mathrm{C}_{12} \mathrm{H}_{31} \mathrm{ClCoCrN} \mathrm{S}_{5} \mathrm{O}_{9.5}$
M	543.79
Crystal colour	Violet
Crystal size/mm	$0.17 \times 0.17 \times 0.20$
Crystal system	Monoclinic
Space group	C2/c(no. 15)
a / \AA	16.384(2)
b / \AA	14.660(2)
c / \AA	18.874(2)
$\alpha{ }^{\circ}$	
$\beta /{ }^{\circ}$	110.77(1)
$\gamma{ }^{\circ}$	
U / \AA^{3}	4239(1)
Z	8
$D_{\text {c }} / \mathrm{g} \mathrm{cm}^{-3}$	1.676
$\mu(\mathrm{Mo}-\mathrm{K} \alpha) / \mathrm{cm}^{-1}$	14.60
2θ range ${ }^{\circ}$	3-60
h, k, l	+23, $+21, \pm 27$
No. of unique reflections	6438
Transmission factors	0.90-1.00
No. of observed reflections $[F>3 \sigma(F)]$	4311
No. of variables	426
$F(000)$	2216
R^{a}	0.038
$R^{\prime \prime}$	0.048

$\mathbf{3 b}$	$\mathbf{8 b}$
$\mathrm{C}_{12} \mathrm{H}_{31} \mathrm{ClCr}_{2} \mathrm{~N}_{5} \mathrm{O}_{9.5}$	$\mathrm{C}_{30} \mathrm{H}_{38} \mathrm{ClCr}_{2} \mathrm{~N}_{5} \mathrm{O}_{15}$
536.85	848.10
Violet	Dark green
$0.15 \times 0.20 \times 0.20$	$0.20 \times 0.20 \times 0.10$
Monoclinic	Triclinic
C2/c(no. 15)	$P \mathrm{~T}($ no. 2$)$
$16.465(3)$	$15.79(1)$
$14.727(2)$	$18.04(1)$
$19.057(2)$	$12.77(1)$
	$96.39(8)$
$110.28(1)$	$102.23(7)$
	$102.83(7)$
$4334.5(9)$	$3418(5)$
8	4
1.645	1.648
11.56	7.76
$3-60$	$3-48$
$+23,+21, \pm 27$	$+18, \pm 20, \pm 14$
6604	10803
$0.92-1.00$	$0.91-1.00$
3946	5619
416	965
2232	1752
0.042	0.077
0.049	0.100

${ }^{a} R=\Sigma| | F_{\mathrm{o}}\left|-\left|F_{\mathrm{c}}\right|\right| / \Sigma\left|F_{\mathrm{o}}\right| \cdot{ }^{b} R^{\prime}=\left[\Sigma w\left(\left|F_{\mathrm{o}}\right|-\left|F_{\mathrm{c}}\right|\right)^{2} / \Sigma w\left|F_{\mathrm{o}}\right|^{2}\right]^{\frac{1}{2}} ; w=1 / \sigma^{2}(F)$.

Crystal Structures of $\left[(\mathrm{nta}) \mathrm{Cr}(\mathrm{OH})_{2} \mathrm{M}(\mathrm{tn})_{2}\right] \mathrm{Cl} \cdot 1.5 \mathrm{H}_{2} \mathrm{O}(\mathrm{M}=$ Co $\mathbf{3 a}$ or $\mathrm{Cr} \mathbf{3 b}$).-The atomic parameters and selected bond lengths and angles are listed in Tables 3 and 4, respectively.

A perspective view of the dinuclear complex cation of $\mathbf{3 a}$ is shown in Fig. 1. The chromium(III) and cobalt(III) ions are in an approximately octahedral environment. The bridging unit $\mathrm{Cr}(\mathrm{OH})_{2} \mathrm{Co}$ is almost flat. The $\mathrm{Co}-\mathrm{N}(\mathrm{tn})$ bond lengths fall in the range $1.956(3)-1.994(3) \AA$ (average $1.969 \AA$). These are almost the same as values for reported Co-tn complexes. ${ }^{26}$ The $\mathrm{Cr}-\mathrm{N}$ (nta) and $\mathrm{Cr}-\mathrm{O}$ (nta) bond lengths are $2.060(3)$ and $1.975 \AA$ (average), respectively. The bond lengths and angles in the $\mathrm{Cr}(\mathrm{nta})$ moiety are almost the same those of $\mathrm{K}_{2}\left[\mathrm{Cr}_{2} \text { (nta) }\right)_{2}$ -$\left.(\mu-\mathrm{OH})\left(\mu-\mathrm{O}_{2} \mathrm{CMe}\right)\right] \cdot 4 \mathrm{H}_{2} \mathrm{O}^{27}$ and $\mathrm{Cs}_{2}\left[\mathrm{Cr}_{2}(\mathrm{nta})_{2}(\mu-\mathrm{OH})_{2}\right]$. $4 \mathrm{H}_{2} \mathrm{O} .{ }^{28}$ The $\mathrm{Cr} \cdots \mathrm{Co}$ distance is $2.9493(7) \AA$.

The (nta) $\mathrm{Cr}-\mathrm{O}(8) \mathrm{H}$ distance $[1.913(2) \AA]$ trans to the nta amine nitrogen atom is significantly shorter (by $0.054 \AA$) than the (nta) $\mathrm{Cr}-\mathrm{O}(7) \mathrm{H}$ distance $[1.967(2) \AA]$ cis to one as shown in Table 4. This difference is not obviously found in the symmetrical di- $\mu-\mathrm{OH}$ complex $\mathrm{Cs}_{2}\left[\mathrm{Cr}_{2}(\text { nta })_{2}(\mathrm{OH})_{2}\right] \cdot 4 \mathrm{H}_{2} \mathrm{O} .{ }^{28}$ Similar differences in $\mathrm{Cr}-\mathrm{O}$ bonds between cis and trans positions of the tertiary amine nitrogen atoms are found in analogous nta monomeric complexes $\left[\mathrm{CrL}(\mathrm{Him})_{2}\right][\mathrm{HL}=(S)$ N, N-bis(carboxymethyl)-L-leucine or -L-phenylalanine, $\mathrm{Him}=$ imidazole] by Bocarsly et al. ${ }^{29}$ Contrary to the (nta) $\mathrm{Cr}-\mathrm{OH}$ bonds, the (tn) ${ }_{2} \mathrm{Co}-\mathrm{OH}$ bond lengths showed little differences [$\mathrm{Co}-\mathrm{O}(7) \mathrm{H} 1.935(2)$ and $\mathrm{Co}-\mathrm{O}(8) \mathrm{H} 1.921(2) \AA]$, which are comparable with $\mathrm{Co}-\mathrm{OH}(1.93 \AA)$ in $\left[\mathrm{Co}_{2}(\mathrm{OH})_{2}(\mathrm{en})_{4}\right]$ $\left[\mathrm{NO}_{3}\right]_{4}{ }^{30}$

Chelate ring 1 in the propane-1,3-diamine ligand has a chair conformation and the disordered rings 2 A and 2 B with equal occupancies have skewboat conformations. The overall conformation of the $\mathrm{Cr}(\operatorname{tn})_{2}$ moiety is Δa-chair $\lambda(\delta)$, where a chair is defined by Jurnak and Raymond. ${ }^{31}$

Intramolecular hydrogen bonds are expected between the amine protons of the propane-1,3-diamine ligands and co-ordinated oxygen atoms of nta as observed in [(edda)-$\left.\mathrm{Co}(\mu-\mathrm{OH})_{2} \mathrm{Co}(\mathrm{en})(\mathrm{glyO})\right]^{+4 c} \quad$ and $\quad\left[\left(\mathrm{H}_{2} \mathrm{O}\right)(\operatorname{tacn}) \mathrm{Cr}-\right.$ $\left.(\mu-\mathrm{OH})_{2} \mathrm{Cr}(\operatorname{tacn})\left(\mathrm{H}_{2} \mathrm{O}\right)\right]^{4+32} \quad\left(\mathrm{H}_{2} \mathrm{edda}=\right.$ ethane-1,2-diamineN, N^{\prime}-diacetic acid, glyO $=$ glycinate, tacn $=1,4,7$-triazacyclononane). The distances $\mathrm{N}(2) \cdots \mathrm{O}(3)$ and $\mathrm{N}(5) \cdots \mathrm{O}(5)$ are

Fig. 1 An ORTEP drawing of $\left[(\mathrm{nta}) \mathrm{Cr}(\mathrm{OH})_{2} \mathrm{Co}(\mathrm{tn})_{2}\right]^{+}$3a with thermal ellipsoids drawn at the 50% probability level
3.192(4) and 2.967(4) \AA, respectively. Since the N . . . O distances are in the range $2.57-3.24 \AA,{ }^{33}$ there are two intramolecular hydrogen bonds between the tn and nta ligands. The amine proton of chelate ring 1 forms a hydrogen bond with the coordinated nta oxygen atom in a neighbouring molecule $\left[\mathrm{N}(3) \cdots \mathrm{O}\left(2^{\prime}\right) 2.860(4) \AA\right.$]. Since two hydrogen bonds (intraand inter-molecular) exist in chelate ring 1 , the chair conformation of this ring could be fixed. However, since such an intramolecular hydrogen bond does not exist in ring 2, the relevant conformation is not fixed and is disordered. The hydrogen atoms of the bridging OH groups are bonded to the oxygen atom of water of crystallization $[\mathrm{O}(8) \ldots \mathrm{O}(9) 2.723(3) \AA]$ and to the Cl^{-}counter anion $[\mathrm{O}(8) \cdots \mathrm{Cl} 3.171(2) \AA]$.

Complex 3b is isostructural to 3a as shown in Fig. 2. The characteristics of the bond lengths and angles of the $\mathrm{Cr}(\mathrm{tn})_{2}$ moiety are the same as those for previously reported $\mathrm{Cr}-\mathrm{tn}$ complexes. ${ }^{34}$ The three carbon atoms $C(10), C(11)$ and $C(12)$ look fairly anisotropic and ring 2 may be disordered in view of the relation to 3a, although this has not been modelled. The $\mathrm{Cr} \ldots \mathrm{Cr}$ distance is $2.9816(9) \AA$.

Table 3 Positional parameters for $\left[(n t a) \mathrm{Cr}(\mathrm{OH})_{2} \mathrm{M}(\mathrm{tn})_{2}\right] \mathrm{Cl} \cdot 1 \cdot 5 \mathrm{H}_{2} \mathrm{O}(\mathrm{M}=\mathrm{Co} 3 \mathrm{a}$ or $\mathrm{Cr} \mathbf{3 b})$

	3a			3b		
Atom	X / a	Y / b	Z/c	X / a	Y / b	Z/c
M	0.298 53(2)	0.667 86(3)	0.362 13(2)	$0.29950(3)$	0.667 25(4)	0.363 65(3)
Cr	0.259 72(3)	0.549 68(3)	0.472 65(3)	0.261 65(3)	0.548 00(3)	0.474 98(3)
$\mathrm{O}(1)$	0.3134 (1)	0.530 4(2)	0.5823 (1)	$0.3136(2)$	0.529 5(2)	0.5827 (1)
O(2)	0.317 5(2)	0.434 4(2)	0.674 1(1)	$0.3157(2)$	0.435 6(2)	0.6741 (2)
$\mathrm{O}(3)$	0.1663 (1)	0.627 2(1)	0.4863 (1)	0.168 3(2)	0.624 5(2)	0.488 2(1)
$\mathrm{O}(4)$	0.023 9(2)	$0.6288(2)$	0.463 4(2)	0.0261 (2)	0.625 4(2)	$0.4647(2)$
$\mathrm{O}(5)$	$0.3269(1)$	0.4455 (1)	0.456 2(1)	0.329 6(2)	0.445 3(2)	0.458 6(1)
O(6)	$0.3198(2)$	0.2971 (2)	0.432 9(2)	$0.3248(2)$	0.297 5(2)	$0.4362(2)$
O(7)	0.212 2(1)	0.578 6(1)	0.363 8(1)	0.214 4(1)	0.5750 (2)	$0.3668(1)$
O(8)	0.3369 (1)	$0.6461(1)$	0.4693 (1)	0.338 3(1)	0.6447 (2)	$0.4711(1)$
O(9)	-0.003 8(2)	0.817 4(2)	0.438 6(2)	-0.0013(2)	0.812 8(2)	0.4390 (2)
$\mathrm{O}(10)$	1.0	0.4923 (8)	0.75	1.0	0.484 2(7)	0.75
N(1)	0.174 2(2)	0.4487 (2)	0.477 2(1)	0.177 5(2)	0.447 3(2)	0.479 5(2)
N(2)	0.222 6(2)	0.762 5(2)	0.379 3(1)	0.2180 (2)	0.766 4(2)	0.379 5(2)
N(3)	0.248 8(2)	0.6928 (2)	0.253 3(1)	0.247 2(2)	0.695 6(2)	0.2500 (2)
N(4)	0.389 3(2)	$0.7607(2)$	0.377 5(2)	$0.3956(2)$	0.764 0(2)	0.377 8(2)
N(5)	0.3689 (2)	0.5641 (2)	0.346 3(2)	0.375 3(2)	0.561 6(2)	0.344 8(2)
C(1)	0.195 4(2)	0.4267 (2)	0.559 5(2)	$0.1968(2)$	0.4259 (2)	$0.5604(2)$
C(2)	0.2827 (2)	0.465 2(2)	$0.6102(2)$	0.282 4(2)	0.465 5(2)	$0.6106(2)$
C(3)	$0.0868(2)$	0.489 9(2)	0.4427 (2)	0.090 2(2)	0.486 9(2)	0.445 6(2)
C(4)	0.0909 (2)	0.590 0(2)	0.466 1(2)	0.0935 (2)	0.5867 (2)	$0.4678(2)$
C(5)	0.1913 (2)	0.370 2(2)	0.4351 (2)	0.195 6(2)	0.368 7(2)	0.4383 (2)
C(6)	0.2861 (2)	0.368 4(2)	0.4419 9)	0.290 5(2)	0.368 1(2)	0.4451 (2)
C(7)	0.129 2(2)	0.768 4(2)	$0.3318(2)$	0.125 6(2)	0.767 9(2)	$0.3302(2)$
C(8)	$0.1162(2)$	0.775 2(3)	0.249 0(2)	$0.1164(2)$	$0.7787(2)$	0.2491 12)
C(9)	0.1528 (2)	0.6969 (2)	$0.2178(2)$	0.1511 (2)	0.700 2(3)	0.2173 (2)
C(10A)*	0.476 4(4)	0.748 6(5)	0.376 3(4)	0.4770 (4)	0.744 9(4)	0.363 9(5)
$\mathrm{C}(10 \mathrm{~B})^{*}$	0.4605 (5)	0.734 0(6)	0.340 4(5)			
C(11A)*	0.4860 (6)	0.665 9(7)	0.336 2(6)	0.5030 (5)	$0.6577(5)$	$0.3598(6)$
C(11B)**	$0.5107(4)$	0.648 5(5)	0.379 1(4)			
C(12A)*	0.467 2(5)	$0.5739(6)$	0.374 9(6)	0.4670 (3)	$0.5728(4)$	0.3513 (5)
C(12B)*	0.4567 (5)	0.571 6(5)	0.3381 (5)			
Cl	0.819 60(8)	0.577 12(7)	0.759 65(7)	0.822 18(9)	$0.57819(9)$	0.755 64(7)

*The population parameter is 0.5 for complex 3a.

Fig. 2 An ORTEP drawing of $\left[(n t a) \mathrm{Cr}(\mathrm{OH})_{2} \mathrm{Cr}(\mathrm{tn})_{2}\right]^{+}$3b with thermal ellipsoids drawn at the 50% probability level

Crystal Structure of $\left[(\right.$ nta $\left.) \mathrm{Cr}(\mathrm{OH})_{2} \mathrm{Cr}(\text { phen })_{2}\right] \mathrm{Cl} \cdot 7 \mathrm{H}_{2} \mathrm{O}$ $\mathbf{8 b}$.-Selected atomic parameters, bond lengths and angles are listed in Tables 5 and 6, respectively. Two crystallographically independent but similar complex cations (molecules 1 and 2 in Tables 5 and 6) are contained in an asymmetric unit. Each of the chromium(III) ions is in an approximately octahedral environment. The bridging units are almost flat. Fig. 3 shows a perspective view of molecule 1 .

The average $\mathrm{Cr}-\mathrm{N}$ (phen) bond length is $2.06 \AA$. This is almost the same as in $\left[\mathrm{Cr}_{2}(\mu-\mathrm{OH})_{2}(\text { phen })_{4}\right] \mathrm{X}_{4}\left(\mathrm{X}=\mathrm{Cl}^{35}\right.$ or $\left.\mathrm{I}^{36}\right)$. The average $\mathrm{Cr}-\mathrm{N}$ (nta) and $\mathrm{Cr}-\mathrm{O}$ (nta) bond lengths are 2.05 and $1.96 \AA$, respectively. The average $\mathrm{Cr} \cdots \mathrm{Cr}$ distance is $2.981 \AA$.

The difference in the (nta) $\mathrm{Cr}-\mathrm{OH}$ bonds between those trans and cis to the nta nitrogen atom is $0.02 \AA$ (average) in complex $\mathbf{8 b}$ similarly to those in $\mathbf{3 a}$ and $\mathbf{3 b}$. The bond trans to the nta nitrogen atom is significantly longer (about $0.03 \AA$) than the corresponding bonds in the aliphatic diamine complexes $3 a$ and $\mathbf{3 b}$. The differences in the $\mathrm{Cr}-\mathrm{O}$ bonds for $\mathbf{3 a}$ or $\mathbf{3 b}$ and $\mathbf{8 b}$ may be influenced by the extent of the π-bond interaction in the $\mathrm{L}_{4} \mathrm{M}-\mathrm{OH}$ bond as examined below in the context of the acid strength of the bridging hydroxide. It is noticeable that the (nta) $\mathrm{Cr}-\mathrm{OH}$ bonds trans to the nta nitrogen atom vary with the extent of this π-bond interaction but that those cis are almost unaltered.

The $\mathrm{CrL}_{4}-\mathrm{OH}$ bond lengths of complex $\mathbf{8 b}$ are significantly shorter $(0.04 \AA)$ than those of $\mathbf{3 b}$. A similar situation is encountered for $\left[\mathrm{Cr}_{2}(\mathrm{OH})_{2}(\text { phen })_{4}\right]^{4+35,36}(1.92 \AA)$ and $\left[\mathrm{Cr}_{2}(\mathrm{OH})_{2}(\mathrm{en})_{4}\right]^{4+{ }^{37}}(1.95 \AA)$. This difference is due to the π bond interaction. From these structural characteristics of the unsymmetrical dinuclear complexes, it is seen that the structural parameters of the bridging moiety around the $\mathrm{Cr}(\mathrm{nta})$ and CrL_{4} are almost retained in the corresponding symmetrical dinuclear complexes.

Magnetic Properties.-For homometallic $\mathrm{Cr}^{\mathrm{III}}{ }_{2}$ complexes the temperature-dependent magnetic susceptibility data were fitted by the van Vleck equation (1) defined by the exchange

$$
\begin{align*}
\chi & =\frac{N g^{2} \beta^{2}}{k T} \\
& \frac{2 \exp (2 J / k T)+10 \exp (6 J / k T)+8 \exp (12 J / k T)}{1+3 \exp (2 J / k T)+5 \exp (6 J / k T)+7 \exp (12 J / k T)} \tag{1}
\end{align*}
$$

Table 4 Selected bond lengths (\AA), angles $\left({ }^{\circ}\right)$ and torsion angles $\left({ }^{\circ}\right)$ for $\left[(n t a) \mathrm{Cr}(\mathrm{OH})_{2} \mathrm{M}(\mathrm{tn})_{2}\right] \mathrm{Cl} \cdot 1.5 \mathrm{H}_{\mathbf{2}} \mathrm{O}(\mathrm{M}=\mathrm{Co} 3 \mathrm{a}$ or Cr 3 3)

	3a	3b		3a	
M-N(2)	$1.965(3)$	2.075(3)	$\mathrm{Cr}-\mathrm{N}(1)$	2.060(3)	2.052(3)
M-N(3)	1.956(3)	2.077(3)	$\mathrm{Cr}-\mathrm{O}(1)$	1.960(2)	1.951(2)
M-N(4)	$1.961(3)$	2.076(3)	$\mathrm{Cr}-\mathrm{O}(3)$	$1.995(3)$	$1.991(3)$
$\mathrm{M}-\mathrm{N}(5)$	1.994(3)	2.102(3)	$\mathrm{Cr}-\mathrm{O}(5)$	1.971(2)	1.970 (3)
M-O(7)	$1.935(2)$	1.967(3)	$\mathrm{Cr}-\mathrm{O}(7)$	1.967(2)	1.976 (2)
$\mathrm{M}-\mathrm{O}(8)$	1.921(2)	$1.951(2)$	$\mathrm{Cr}-\mathrm{O}(8)$	1.913(2)	1.921(3)
$\mathrm{O}(7)-\mathrm{M}-\mathrm{O}(8)$	80.69(9)	80.63(9)	$\mathrm{O}(1)-\mathrm{Cr}-\mathrm{O}(7)$	174.97(9)	175.7(1)
$\mathrm{O}(7)-\mathrm{M}-\mathrm{N}(2)$	88.1(1)	88.8(1)	$\mathrm{O}(1)-\mathrm{Cr}-\mathrm{O}(8)$	94.97(9)	95.1(1)
$\mathrm{O}(7)-\mathrm{M}-\mathrm{N}(3)$	96.3(1)	97.3(1)	$\mathrm{O}(1)-\mathrm{Cr}-\mathrm{N}(1)$	84.8(1)	84.9(1)
$\mathrm{O}(7)-\mathrm{M}-\mathrm{N}(4)$	170.9(1)	171.4(1)	$\mathrm{O}(1)-\mathrm{Cr}-\mathrm{O}(3)$	91.4(1)	91.3(1)
$\mathrm{O}(7)-\mathrm{M}-\mathrm{N}(5)$	87.2(1)	88.0(1)	$\mathrm{O}(1)-\mathrm{Cr}-\mathrm{O}(5)$	89.3(1)	89.6(1)
$\mathrm{O}(8)-\mathrm{M}-\mathrm{N}(2)$	86.2(1)	87.7(1)	$\mathrm{O}(3)-\mathrm{Cr}-\mathrm{O}(5)$	163.52(9)	163.8(1)
$\mathrm{O}(8)-\mathrm{M}-\mathrm{N}(3)$	174.7(1)	174.5(1)	$\mathrm{O}(3)-\mathrm{Cr}-\mathrm{O}(7)$	88.52(9)	88.7(1)
$\mathrm{O}(8)-\mathrm{M}-\mathrm{N}(4)$	90.6(1)	91.4(1)	$\mathrm{O}(3)-\mathrm{Cr}-\mathrm{O}(8)$	97.46(9)	97.6(1)
$\mathrm{O}(8)-\mathrm{M}-\mathrm{N}(5)$	92.3(1)	93.2(1)	$\mathrm{O}(3)-\mathrm{Cr}-\mathrm{N}(1)$	80.8(1)	80.9(1)
$\mathrm{N}(2)-\mathrm{M}-\mathrm{N}(3)$	89.4(1)	87.4(1)	$\mathrm{O}(5)-\mathrm{Cr}-\mathrm{O}(7)$	92.23(9)	91.6(1)
$\mathrm{N}(2)-\mathrm{M}-\mathrm{N}(4)$	88.6(1)	90.0(1)	$\mathrm{O}(5)-\mathrm{Cr}-\mathrm{O}(8)$	98.9(1)	98.4(1)
$\mathrm{N}(2)-\mathrm{M}-\mathrm{N}(5)$	175.2(1)	176.4(1)	$\mathrm{O}(5)-\mathrm{Cr}-\mathrm{N}(1)$	82.9(1)	83.2(1)
$\mathrm{N}(3)-\mathrm{M}-\mathrm{N}(4)$	92.2(1)	91.1(1)	$\mathrm{O}(7)-\mathrm{Cr}-\mathrm{N}(1)$	100.11(9)	99.3(1)
$\mathrm{N}(3)-\mathrm{M}-\mathrm{N}(5)$	91.9(1)	91.6(1)	$\mathrm{O}(8)-\mathrm{Cr}-\mathrm{N}(1)$	178.2(1)	178.4(1)
$\mathrm{N}(4)-\mathrm{M}-\mathrm{N}(5)$	95.9(1)	93.4(1)	$\mathrm{M}-\mathrm{O}(7)-\mathrm{Cr}$	98.20(8)	98.27(9)
$\mathrm{O}(7)-\mathrm{Cr}-\mathrm{O}(8)$	80.07(8)	80.1(1)	$\mathrm{M}-\mathrm{O}(8)-\mathrm{Cr}$	100.61(8)	100.72(9)
$\mathrm{Cr}-\mathrm{N}(1)-\mathrm{C}(1)-\mathrm{C}(2)$	-14.1 (3)	-13.9(4) (R ring)*	$\mathrm{Cr}-\mathrm{N}(1)-\mathrm{C}(5)-\mathrm{C}(6)$	30.7(3)	30.4(3) (G_{2} ring)*
$\mathrm{Cr}-\mathrm{N}(1)-\mathrm{C}(3)-\mathrm{C}(4)$	-37.6(3)	-36.8(4) (G1 ring)*			

* R and G rings are defined in the text.

Fig. 3 An ORTEP drawing of $\left[(n t a) \mathrm{Cr}(\mathrm{OH})_{2} \mathrm{Cr}(\mathrm{phen})_{2}\right]^{+} \mathbf{8 b}$ (molecule 1) with thermal ellipsoids drawn at the 50% probability level. Hydrogen atoms are omitted for clarity

Hamiltonian $H=-2 J\left(S_{1} \cdot S_{2}\right)$ where $2 J$ is the spin-exchange coupling constant in cm^{-1}. The coupling constants were derived from non-linear least-squares fits of $\chi v s . T$. The best fit of the susceptibility data reveals that the homodinuclear complexes give antiferromagnetic couplings. The data are listed in Table 7. These $2 J$ values $\left[-17.2(2)\right.$ to $\left.-31.4(3) \mathrm{cm}^{-1}\right]$ are in the range of those found for other dinuclear di- μ-hydroxochromium(III) complexes. ${ }^{38}$

The structure analysis for complex 3b described above reveals that the angle θ, between the $\mathrm{Cr}_{2} \mathrm{O}_{2}$ plane and the hydrogen atom of the bridging hydroxide ligand, is 22.7° (average). From the Glerup-Hodgson-Pedersen (GHP) model, ${ }^{38}$ the coupling constant ($2 J$) for 3 b is estimated to be $-23.1 \mathrm{~cm}^{-1}$ by using the structural parameters (average) $r=1.954 \AA, \theta=22.7^{\circ}$ and $\varphi=$ 99.5° where r is the $\mathrm{Cr}-\mathrm{OH}$ bond length and φ is the $\mathrm{Cr}-\mathrm{O}-\mathrm{Cr}$
bond angle. This differs from the observed value of $-17.2(2)$ cm^{-1}. The disagreement arises from the different $\mathrm{Cr}-\mathrm{O}$ lengths $[1.976(2)-1.921(3) \AA]$ in Table 4, since the calculated $2 J$ value is sensitive to small changes in r as Hodgson et al. ${ }^{39}$ reported in the case of $\left[\mathrm{Cr}_{2}(\mu-\mathrm{OH})_{2}(\text { tpma })_{2}\right]\left[\mathrm{ClO}_{4}\right]_{4} \cdot 4 \mathrm{H}_{2} \mathrm{O}[$ tpma $=$ tris(2-pyridylmethyl)amine].

Acid Strength of Bridging Hydroxide.-The colours of aqueous solutions of complexes 1a-5a and $\mathbf{1 b - 5 b}$ instantaneously change from red to blue by adding sodium hydroxide solution. The reactions are reversible and presumably due to deprotonation of the hydroxo bridges giving μ-hydroxo- μ-oxo complexes as observed for $\left[\mathrm{Cr}_{2}(\mu-\mathrm{OH})_{2}\left(\mathrm{NH}_{3}\right)_{8}\right]^{4+},{ }^{40}\left[\mathrm{Cr}_{2}(\mu-\right.$ $\left.\mathrm{OH})_{2}(\mathrm{en})_{4}\right]^{4+}{ }^{41}\left[\mathrm{Cr}_{2}(\mu-\mathrm{OH})\left(\mu-\mathrm{SO}_{4}\right)(\mathrm{en})_{2}\right]^{3++},{ }^{42}$ and $\left[\mathrm{Cr}_{2}(\mu-\right.$ $\left.\mathrm{OH})\left(\mu-\mathrm{O}_{2} \mathrm{CMe}\right)(\mathrm{en})_{4}\right]^{++} .^{43}$ The $\mathrm{p} K_{\mathrm{a} 1}$ values were found to be about 12 for the aliphatic diamine $\left[\mathrm{NH}_{3}, \mathrm{en}, \mathrm{tn},(R, R) \mathrm{chxn}\right.$ and trien] complexes, 11.0 (6a) and 9.8 (6b) for the amp ones and about 9 (9.3 for 7a, 9.0 for 7 b, 9.4 for 8 a and 9.2 for $8 b$) for the bipy and phen ones. Similar values were found for the symmetrical $\left[\mathrm{Cr}_{2}(\mu-\mathrm{OH})_{2} \mathrm{~L}_{8}\right]^{4+}$ dinuclear complexes. ${ }^{1}$ This trend in the acid strength depends on the $\mathrm{M}-\mathrm{L}_{4}$ bond character. As the $\mathrm{M}-\mathrm{N}$ bond is strengthened by the π-acceptor interaction, the $\mathrm{M}-\mathrm{O}$ bond is enhanced by the π-donor interaction simultaneously as a push-pull action.

Absorption and CD Spectra.-The UV/VIS absorption spectra of four complexes ($\mathbf{2 a}, \mathbf{8 a}, \mathbf{2 b}$ and $\mathbf{8 b}$) are shown in Fig. 4. The dinuclear complexes give broad absorption bands because of the two different chromophores CrNO_{5} and $\mathrm{MN}_{4} \mathrm{O}_{2}$ ($\mathrm{M}=\mathrm{Cr}^{\text {III }}$ or $\mathrm{Co}^{\text {III }}$) in the first spin-allowed $\mathrm{d}-\mathrm{d}$ region. Split components in this region were observed for some complexes. Each maximum is assigned to the $(\mathrm{nta}) \mathrm{Cr}(\mathrm{OH})_{2}$ or $(\mathrm{HO})_{2} \mathrm{ML}_{4}$ chromophores (Table 7). A broad band occurred at ca. 300 nm for the $\mathrm{Cr}^{\text {III }} \mathrm{Co}^{\text {III }}$ aliphatic diamine complexes [Fig. 4(b)] as for the di- μ-hydroxo-dicobalt(III) complexes. It is assigned to the charge-transfer (c.t.) transition of the $\mathrm{Co}-\mathrm{OH}$ moiety for $\mathrm{Co}(\mu-\mathrm{OH})_{2} \mathrm{Co}$ type complexes. ${ }^{44}$ The absorption intensities of c.t. transitions for the $\mathrm{Cr}^{\text {III }} \mathrm{Co}^{\text {III }}$ complexes are about one-fourth less than those of $\mathrm{Co}^{\mathrm{II}}{ }_{2}$ ones. ${ }^{4}$ An inflection at 285 nm appears for the $\mathrm{Cr}^{\mathrm{III}}{ }_{2}$ aliphatic diamine complexes. Complex 4 b exhibits

Table 5 Positional parameters for $\left[(\right.$ nta $\left.) \mathrm{Cr}(\mathrm{OH})_{2} \mathrm{Cr}(\text { phen })_{2}\right] \mathrm{Cl} \cdot 7 \mathrm{H}_{2} \mathrm{O} 8 \mathrm{~b}$

Atom	X/a	Y / b	Z/c	Atom	X/a	Y / b	Z/c
$\mathrm{Cr}(1)$	0.6867(1)	0.1863(1)	0.7084(1)	$\mathrm{O}(14)$	0.9163(6)	-0.2622(5)	0.6605(8)
$\mathrm{Cr}(2)$	0.7351(1)	0.0724(1)	0.8454(2)	$\mathrm{O}(15)$	0.6780(6)	-0.2812(5)	0.2551(7)
$\mathrm{O}(1)$	0.7032(6)	0.2112(5)	0.5687(7)	$\mathrm{O}(16)$	0.7142(8)	-0.1919(7)	0.150(1)
O(2)	0.6773(7)	0.2900(6)	0.4531(8)	$\mathrm{O}(17)$	0.8005(5)	-0.3691(5)	$0.3334(7)$
$\mathrm{O}(3)$	0.5648(6)	0.1210(5)	0.6388(7)	$\mathrm{O}(18)$	0.6457(5)	-0.4202(5)	0.3434(7)
O(4)	0.4252(6)	0.1099(6)	0.6505(8)	N(11)	0.7973(7)	-0.2045(6)	$0.429(1)$
O(5)	0.7878(6)	0.2748(5)	0.7815(7)	N(12)	0.7661(6)	-0.5055(5)	0.4378(8)
O(6)	$0.8236(7)$	0.3963(5)	0.8640(8)	N(13)	0.8218(6)	-0.5261(5)	0.2591 (8)
$\mathrm{O}(7)$	0.6756(5)	0.1544(4)	0.8485(6)	N(14)	0.6263 (7)	-0.5278(6)	$0.2318(8)$
$\mathrm{O}(8)$	0.7467(6)	0.1026(5)	$0.7084(6)$	N(15)	0.6868(7)	-0.4599(6)	0.1304(8)
N(1)	$0.6148(7)$	0.2682(5)	0.7054(8)	C(51)	0.745 (1)	-0.1603(8)	0.483(1)
N(2)	0.6173(7)	-0.0093(6)	0.7777(8)	C(52)	$0.666(1)$	-0.2099(9)	0.511(1)
N(3)	0.7051(7)	0.0385(6)	0.9859(8)	C(53)	0.8806(8)	-0.2068(7)	0.503(1)
N(4)	0.8062(7)	-0.0110(6)	0.8316(9)	C(54)	0.8606(8)	$-0.2676(7)$	$0.574(1)$
N(5)	0.8632(7)	0.1377(6)	0.9221(9)	C(55)	0.808(1)	-0.1794(8)	0.326(1)
C(1)	$0.602(1)$	0.2890(8)	0.594(1)	C(56)	0.726(1)	-0.218(1)	$0.235(1)$
C(2)	0.667(1)	0.2640(8)	0.533(1)	C(57)	0.7370 (9)	-0.4938(8)	$0.527(1)$
C(3)	0.5283(9)	0.2295(8)	0.724(1)	C(58)	0.775(1)	-0.5151(8)	0.623(1)
C(4)	0.5018(8)	0.1469(8)	0.666(1)	C(59)	0.843(1)	-0.5494(8)	0.628(1)
C(5)	$0.667(1)$	$0.3325(8)$	0.790(1)	C(60)	0.8748(9)	-0.5647(8)	0.537(1)
C(6)	0.768(1)	0.3371 (7)	0.814(1)	C(61)	0.947 (1)	-0.6001(8)	0.533(1)
C(7)	$0.575(1)$	-0.0316(7)	0.673(1)	C(62)	0.975(1)	-0.6109(9)	0.442(1)
C(8)	0.493(1)	-0.0865(8)	0.638(1)	C(63)	0.9348(9)	-0.5874(7)	$0.345(1)$
C(9)	0.453(1)	-0.1170(8)	0.714(1)	C(64)	0.960(1)	-0.5992(8)	0.247(1)
C (10)	0.4968(9)	-0.0974(7)	$0.828(1)$	C(65)	$0.917(1)$	-0.5279(9)	$0.158(1)$
C(11)	0.464(1)	-0.1278(8)	0.916(1)	C(66)	0.8460(8)	-0.5381(8)	0.167(1)
C(12)	$0.509(1)$	-0.1050(8)	1.019(1)	C(67)	0.8638(8)	-0.5518(7)	0.346(1)
C(13)	0.596(1)	-0.0476(7)	1.048(1)	C(68)	0.8340(8)	-0.5400(7)	0.443 (1)
C(14)	0.645(1)	-0.020(1)	1.156(1)	C(69)	0.5941(9)	-0.6255(8)	0.287(1)
C(15)	0.721(1)	0.0367(9)	1.174(1)	C(70)	0.525(1)	-0.6907(9)	0.238(2)
C(16)	0.7495(9)	0.0660(8)	1.089(1)	C (71)	0.490(1)	-0.6987(8)	0.126(2)
C(17)	0.6269(8)	-0.0168(7)	0.965(1)	C (72)	0.5186(9)	-0.6454(8)	0.068(1)
C(18)	0.5794(8)	-0.0411(7)	0.853(1)	C(73)	0.485(1)	-0.648(1)	-0.047(1)
C(19)	0.779(1)	-0.0844(7)	0.794(1)	C(74)	$0.517(1)$	-0.591(1)	-0.100(1)
C(20)	0.836(1)	-0.1305(9)	0.780(1)	C (75)	0.586(1)	-0.527(1)	-0.043(1)
$\mathrm{C}(21)$	0.922(1)	-0.101(1)	0.805(1)	C(76)	0.623 (1)	-0.465(1)	-0.090(1)
C(22)	0.962(1)	-0.019(1)	0.843(1)	C(77)	0.689(1)	-0.405(1)	-0.029(1)
C(23)	1.056(1)	0.023(1)	0.872(2)	C (78)	0.721(1)	-0.402(1)	0.083(1)
C(24)	1.084(1)	0.098(1)	0.919(1)	C(79)	0.6220(9)	-0.5213(8)	0.070(1)
C(25)	1.021(1)	$0.139(1)$	0.938(1)	C(80)	0.5893(8)	-0.5812(8)	$0.126(1)$
C(26)	1.045 (1)	$0.2141(9)$	0.989(1)	$\mathrm{Cl}(1)$	0.7070 (3)	0.2768(2)	0.0481(3)
C(27)	0.979(1)	0.2503(8)	1.009(1)	$\mathrm{Cl}(2)$	0.4677(5)	$0.5121(4)$	0.3794(6)
C(28)	0.8897(9)	0.2114 (7)	0.972(1)	O(101)	0.0488(5)	0.2900(4)	0.7423(6)
C(29)	0.9271(8)	$0.1006(8)$	0.907(1)	$\mathrm{O}(102)$	0.1233(7)	0.4433(6)	0.0805(9)
C(30)	0.897(1)	0.0219(8)	0.860(1)	O(103)	0.1858(7)	0.3394(6)	0.2052(9)
$\mathrm{Cr}(3)$	0.7253(1)	-0.4724(1)	0.2911(2)	O(104)	1.0009(8)	0.4002(7)	0.882(1)
$\mathrm{Cr}(4)$	0.7201(1)	-0.3151(1)	0.3892(2)	O(105)	0.7647(8)	0.2459(7)	0.288(1)
$\mathrm{O}(11)$	0.6371(6)	-0.2776(5)	0.4588(8)	$\mathrm{O}(106)$	0.9072(9)	0.1790(7)	0.293(1)
$\mathrm{O}(12)$	0.6321(8)	-0.1834(7)	0.580 (1)	$\mathrm{O}(107)$	0.705(1)	0.023(1)	0.474(1)
$\mathrm{O}(13)$	0.7873(5)	-0.3189(5)	0.5388(7)				

a CD maximum at 285 nm . These absorption bands are considered to be characteristic of the $\mathrm{Cr}^{\mathrm{III}}{ }_{2}$ complexes.
${ }^{2} \mathrm{H}$ NMR Spectra and Stereochemistry.-The ${ }^{2} \mathrm{H}$ NMR signals of $\left[\left(\left[{ }^{2} \mathrm{H}_{6}\right] \mathrm{nta}\right) \mathrm{Cr}(\mathrm{OH})_{2} \mathrm{ML}_{4}\right]^{+} \quad(\mathrm{M}=\mathrm{Cr}$ or Co$)$ exhibited large contact shifts as is seen in Fig. 5 and Table 8. The dinuclear complexes with the aliphatic diamines (1a-5a and $\mathbf{1 b}-\mathbf{5 b}$) show similar spectral patterns to each other and to those of reported $\mathrm{Cr}-\mathrm{nta}$ complexes. ${ }^{8,27}$ The tetradentate nta ${ }^{3-}$ ligand has two equivalent acetate chelate rings (G rings) each with inequivalent methylene deuterons and one acetate chelate ring (R ring) with equivalent methylene ones. ${ }^{8,27}$ According to the signal assignment made for $\mathrm{Cr}-\mathrm{nta}^{8,27}$ and $[\mathrm{Cr}(\mathrm{edta})]^{-}$ $\left(\mathrm{H}_{4}\right.$ edta $=$ ethylenediamine- $N, N, N^{\prime}, N^{\prime}$-tetraacetic acid) complexes, ${ }^{45}$ the lower ($\delta-4.4$ to -10.6) and higher ($\delta-27.2$ to -34.6) field signals are assigned to the inequivalent methylene deuterons in the G rings, and the middle ($\delta-9.1$ to -23.6) ones to the equivalent methylene protons in the R ring (Table 8). The aromatic diamine complexes give different NMR patterns from
those of the aliphatic diamine complexes. There is similarity in ${ }^{2} \mathrm{H}$ NMR behaviour among the aromatic amine complexes. Since the homometallic $\mathrm{Cr}^{\mathrm{III}}{ }_{2}$ complexes with both aliphatic and aromatic diamine ligands give similar spectral patterns to those of corresponding heterometallic $\mathrm{Cr}^{\text {III }} \mathrm{Co}^{\text {IIII }}$ ones, the ${ }^{2} \mathrm{H}$ NMR spectra are most influenced by the L_{4} ligands and insignificantly by the metal ion M in the ML_{4} moieties.
The isotropic contact shifts for the deuteriated acetate methylenes in the edta-like chromium(III) complexes was related to a glycinate-like chelate-ring conformation according to relationship between the chemical shifts and the torsion angles in the $\mathrm{Cr}-\mathrm{N}-\mathrm{C}-\mathrm{C}(\mathrm{O})$ fragment of the acetato(glycinato) rings (Karplus-like or $\cos ^{2} \theta$ relation). ${ }^{45}$ The $\cos ^{2} \theta$ relation gives equations (2) and (3) for the A (axial) and B (equatorial) vicinal

$$
\begin{equation*}
\delta_{\mathrm{A}}=C \cos ^{2} \theta \tag{2}
\end{equation*}
$$

$$
\begin{equation*}
\delta_{\mathrm{B}}=C \cos ^{2}\left(\theta+120^{\circ}\right) \tag{3}
\end{equation*}
$$

Table 6 Selected bond lengths (\AA), angles $\left({ }^{\circ}\right)$ and torsion angles $\left({ }^{\circ}\right)$ for $\left[(\mathrm{nta}) \mathrm{Cr}(\mathrm{OH})_{2} \mathrm{Cr}(\mathrm{phen})_{2}\right]^{+} \mathbf{8 b}$

Molecule 1		Molecule 2		Molecule 1		Molecule 2	
$\mathrm{Cr}(1)-\mathrm{O}(1)$	1.94(1)	$\mathrm{Cr}(4)-\mathrm{O}(11)$	1.93(1)	$\mathrm{Cr}(2)-\mathrm{N}(3)$	2.07(1)	$\mathrm{Cr}(3)-\mathrm{N}(13)$	2.06(1)
$\mathrm{Cr}(1)-\mathrm{O}(3)$	1.979(8)	$\mathrm{Cr}(4)-\mathrm{O}(13)$	1.996(9)	$\mathrm{Cr}(2)-\mathrm{N}(4)$	2.08(1)	$\mathrm{Cr}(3)-\mathrm{N}(14)$	2.058(9)
$\mathrm{Cr}(1)-\mathrm{O}(5)$	1.969(8)	$\mathrm{Cr}(4)-\mathrm{O}(15)$	$1.918(9)$	$\mathrm{Cr}(2)-\mathrm{N}(5)$	2.07(1)	$\mathrm{Cr}(3)-\mathrm{N}(15)$	2.07(1)
$\mathrm{Cr}(1)-\mathrm{O}(8)$	1.95(1)	$\mathrm{Cr}(4)-\mathrm{O}(18)$	$1.947(8)$	$\mathrm{N}(1)-\mathrm{C}(1)$	1.49(2)	$\mathrm{N}(11)-\mathrm{C}(51)$	1.48(2)
$\mathrm{Cr}(1)-\mathrm{O}(7)$	1.970(9)	$\mathrm{Cr}(4)-\mathrm{O}(17)$	1.96(1)	$\mathrm{N}(1)-\mathrm{C}(3)$	1.47(2)	$\mathrm{N}(11)-\mathrm{C}(53)$	1.46(2)
$\mathrm{Cr}(1)-\mathrm{N}(1)$	2.05(1)	$\mathrm{Cr}(4)-\mathrm{N}(11)$	2.04(1)	$\mathrm{N}(1)-\mathrm{C}(5)$	1.45(1)	$\mathrm{N}(11)-\mathrm{C}(55)$	1.46(2)
$\mathrm{Cr}(2)-\mathrm{O}(7)$	1.92(1)	$\mathrm{Cr}(3)-\mathrm{O}(17)$	1.923(8)	$\mathrm{C}(1)-\mathrm{C}(2)$	1.52(2)	$\mathrm{C}(51)-\mathrm{C}(52)$	1.50(2)
$\mathrm{Cr}(2)-\mathrm{O}(8)$	1.92(1)	$\mathrm{Cr}(3)-\mathrm{O}(18)$	1.91(1)	$\mathrm{C}(3)-\mathrm{C}(4)$	1.51(2)	$\mathrm{C}(53)-\mathrm{C}(54)$	1.52(2)
$\mathrm{Cr}(2)-\mathrm{N}(2)$	2.05(1)	$\mathrm{Cr}(3)-\mathrm{N}(12)$	2.05(1)	$\mathrm{C}(5)-\mathrm{C}(6)$	1.54(2)	$\mathrm{C}(55)-\mathrm{C}(56)$	1.51(2)
$\mathrm{O}(1)-\mathrm{Cr}(1)-\mathrm{O}(7)$	175.2(4)	$\mathrm{O}(11)-\mathrm{Cr}(4)-\mathrm{O}(17)$	169.3(4)	$\mathrm{O}(7)-\mathrm{Cr}(2)-\mathrm{N}(4)$	174.3(4)	$\mathrm{O}(17)-\mathrm{Cr}(3)-\mathrm{N}(14)$	168.8(4)
$\mathrm{O}(1)-\mathrm{Cr}(1)-\mathrm{O}(5)$	89.4(4)	$\mathrm{O}(11)-\mathrm{Cr}(4)-\mathrm{N}(15)$	93.8(4)	$\mathrm{O}(8)-\mathrm{Cr}(2)-\mathrm{N}(2)$	93.5(4)	$\mathrm{O}(18)-\mathrm{Cr}(3)-\mathrm{N}(12)$	92.5(4)
$\mathrm{O}(1)-\mathrm{Cr}(1)-\mathrm{O}(8)$	95.7(4)	$\mathrm{O}(11)-\mathrm{Cr}(4)-\mathrm{O}(18)$	95.3(4)	$\mathrm{O}(8)-\mathrm{Cr}(2)-\mathrm{N}(4)$	93.4(4)	$\mathrm{O}(18)-\mathrm{Cr}(3)-\mathrm{N}(14)$	92.8(4)
$\mathrm{O}(3)-\mathrm{Cr}(1)-\mathrm{O}(7)$	89.(4)	$\mathrm{O}(13)-\mathrm{Cr}(4)-\mathrm{O}(17)$	87.8(4)	$\mathrm{N}(2)-\mathrm{Cr}(2)-\mathrm{N}(3)$	80.8(4)	$\mathrm{N}(12)-\mathrm{Cr}(3)-\mathrm{N}(13)$	79.6(4)
$\mathrm{O}(3)-\mathrm{Cr}(1)-\mathrm{N}(1)$	79.7(4)	$\mathrm{O}(13)-\mathrm{Cr}(4)-\mathrm{N}(11)$	80.8(4)	$\mathrm{N}(2)-\mathrm{Cr}(2)-\mathrm{N}(5)$	169.3(4)	$\mathrm{N}(12)-\mathrm{Cr}(3)-\mathrm{N}(15)$	168.6(4)
$\mathrm{O}(5)-\mathrm{Cr}(1)-\mathrm{O}(8)$	100.9(4)	$\mathrm{O}(15)-\mathrm{Cr}(4)-\mathrm{O}(18)$	95.0(4)	$\mathrm{N}(3)-\mathrm{Cr}(2)-\mathrm{N}(5)$	94.8(4)	$\mathrm{N}(13)-\mathrm{Cr}(3)-\mathrm{N}(15)$	91.5(4)
$\mathrm{O}(7)-\mathrm{Cr}(1)-\mathrm{O}(8)$	79.5(4)	$\mathrm{O}(17)-\mathrm{Cr}(4)-\mathrm{O}(18)$	77.6(4)	$\mathrm{O}(7)-\mathrm{Cr}(2)-\mathrm{O}(8)$	81.4(4)	$\mathrm{O}(17)-\mathrm{Cr}(3)-\mathrm{O}(18)$	79.4(4)
$\mathrm{O}(8)-\mathrm{Cr}(1)-\mathrm{N}(1)$	175.8(3)	$\mathrm{O}(18)-\mathrm{Cr}(4)-\mathrm{N}(11)$	177.1(4)	$\mathrm{O}(7)-\mathrm{Cr}(2)-\mathrm{N}(3)$	94.2(4)	$\mathrm{O}(17)-\mathrm{Cr}(3)-\mathrm{N}(13)$	97.5(4)
$\mathrm{O}(1)-\mathrm{Cr}(1)-\mathrm{O}(3)$	90.8(4)	$\mathrm{O}(11)-\mathrm{Cr}(4)-\mathrm{O}(13)$	85.9(4)	$\mathrm{O}(7)-\mathrm{Cr}(2)-\mathrm{N}(5)$	97.6(4)	$\mathrm{O}(17)-\mathrm{Cr}(3)-\mathrm{N}(15)$	93.2(4)
$\mathrm{O}(1)-\mathrm{Cr}(1)-\mathrm{N}(1)$	85.3(4)	$\mathrm{O}(11)-\mathrm{Cr}(4)-\mathrm{N}(11)$	86.0(4)	$\mathrm{O}(8)-\mathrm{Cr}(2)-\mathrm{N}(3)$	172.6(4)	$\mathrm{O}(18)-\mathrm{Cr}(3)-\mathrm{N}(13)$	171.3(4)
$\mathrm{O}(3)-\mathrm{Cr}(1)-\mathrm{O}(5)$	162.8(4)	$\mathrm{O}(13)-\mathrm{Cr}(4)-\mathrm{O}(15)$	163.1(4)	$\mathrm{O}(8)-\mathrm{Cr}(2)-\mathrm{N}(5)$	91.6(4)	$\mathrm{O}(18)-\mathrm{Cr}(3)-\mathrm{N}(15)$	96.8(4)
$\mathrm{O}(3)-\mathrm{Cr}(1)-\mathrm{O}(8)$	96.2(4)	$\mathrm{O}(13)-\mathrm{Cr}(4)-\mathrm{O}(18)$	95.3(4)	$\mathrm{N}(2)-\mathrm{Cr}(2)-\mathrm{N}(3)$	80.8(4)	$\mathrm{N}(12)-\mathrm{Cr}(3)-\mathrm{N}(14)$	93.3(4)
$\mathrm{O}(5)-\mathrm{Cr}(1)-\mathrm{O}(7)$	91.3(4)	$\mathrm{O}(15)-\mathrm{Cr}(4)-\mathrm{O}(17)$	94.7(4)	$\mathrm{N}(2)-\mathrm{Cr}(2)-\mathrm{N}(5)$	169.3(4)	$\mathrm{N}(13)-\mathrm{Cr}(4)-\mathrm{N}(14)$	91.3(4)
$\mathrm{O}(5)-\mathrm{Cr}(1)-\mathrm{N}(1)$	83.1(4)	$\mathrm{O}(15)-\mathrm{Cr}(4)-\mathrm{N}(11)$	82.3(4)	$\mathrm{N}(3)-\mathrm{Cr}(2)-\mathrm{N}(5)$	94.8(4)	$\mathrm{N}(14)-\mathrm{Cr}(3)-\mathrm{N}(15)$	79.7(4)
$\mathrm{O}(7)-\mathrm{Cr}(1)-\mathrm{N}(1)$	99.6(4)	$\mathrm{O}(17)-\mathrm{Cr}(4)-\mathrm{N}(11)$	101.5(4)	$\mathrm{Cr}(1)-\mathrm{O}(7)-\mathrm{Cr}(2)$) 99.3(4)	$\mathrm{Cr}(3)-\mathrm{O}(17)-\mathrm{Cr}(4)$	101.0(4)
$\mathrm{O}(7)-\mathrm{Cr}(2)-\mathrm{N}(2)$	92.5(4)	$\mathrm{O}(17)-\mathrm{Cr}(3)-\mathrm{N}(12)$	95.0(4)	$\mathrm{Cr}(1)-\mathrm{O}(8)-\mathrm{Cr}(2)$) 99.9(4)	$\mathrm{Cr}(3)-\mathrm{O}(18)-\mathrm{Cr}(4)$	101.9(4)
$\mathrm{Cr}(1)-\mathrm{N}(1)-\mathrm{C}(1)-\mathrm{C}(2)$	- 17(1)	$\mathrm{Cr}(4)-\mathrm{N}(11)-\mathrm{C}(11)$	C(12)	11(1) (R ring)*	$\mathrm{Cr}(1)-\mathrm{N}(1)-\mathrm{C}$	6) 27(1)	
$\mathrm{Cr}(1)-\mathrm{N}(1)-\mathrm{C}(3)-\mathrm{C}(4)$	-37(1)	$\mathrm{Cr}(4)-\mathrm{N}(11)-\mathrm{C}(13)$	C(14)	-35(2) (G_{1} ring)*	$\mathrm{Cr}(4)-\mathrm{N}(11)-$	$\mathrm{C}(16) \quad 31(2)\left(\mathrm{G}_{2}\right.$ rin	g) *

* R and G rings are defined in the text.

Table 7 Absorption and CD spectral data for the visible region and magnetic parameters for dinuclear complexes
$\lambda / \mathrm{nm}\left(\varepsilon / \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1}\right)^{a}$

Complex	$\sigma_{\text {I }}$		σ_{11}		Magnetic parameters ${ }^{\text {b }}$	
	$(\mathrm{nta}) \mathrm{Cr}(\mathrm{OH})_{2}$	LM(OH) ${ }_{2}$			g	$2 \mathrm{~J} / \mathrm{cm}^{-1}$
1a		545 (146)	380 (223)			
2 a	600 (sh) (100)	510 (161)	380 (sh) (
3 a		531 (125)	390 (sh) (
$4 \mathrm{a}^{\text {c }}$		516 (313)	380 (sh) (
5a		508 (318)	380 (sh) (360			
6 a		510 (180)	370 (sh) (360			
7a	580 (sh) (90)	485 (129)				
8a		512 (133)				
1b		555 (91)	401 (118)	285 (70) ${ }^{\text {d }}$	2.01(1)	-19.5(1)
2 b	585 (sh) (90)	520 (111)	398 (131)	285 (70) ${ }^{\text {d }}$	2.01(2)	-19.8(3)
3b	580 (87)	522 (93)	402 (123)	285 (75) ${ }^{\text {d }}$	2.01(1)	-17.2(2)
$4 b^{\text {e }}$	590 (sh) (90)	520 (119)	398 (133)	285 (75) ${ }^{\text {d }}$	1.98(2)	-25.5(3)
5 b		555 (148)	400 (140)	285 (75) ${ }^{\text {d }}$	1.96(1)	-21.5(4)
6 b		540 (128)	402 (141)		1.99(2)	-20.5(2)
7b		565 (96)			2.02(1)	-31.4(3)
8 b		565 (97)			1.98(1)	-22.6(2)

${ }^{a}$ In water. ${ }^{b}$ Chloride salts; $2 J$ refers to the coupling constant determined from the observed susceptibility data. Values in parentheses are standard deviations in the least significant figure. ${ }^{c} \mathrm{CD}$ maxima $\left[\lambda / \mathrm{nm}\left(\Delta \varepsilon / \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1}\right)\right]: 538(0.900), 496(-1.024)$ and 370 (0.696). ${ }^{d}$ Inflection. ${ }^{e} \mathrm{CD}$ maxima $\left[\lambda / \mathrm{nm}\left(\Delta \varepsilon / \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1}\right)\right]: 698(0.058), 590(0.595), 489(-2.950), 370(0.320)$ and $285(0.046)$
deuterons as shown in Fig. 3 in ref. 45. The difference between the NMR shifts is expressed in equation (4), where α is the

$$
\begin{equation*}
\Delta \delta_{\mathrm{A}, \mathrm{~B}}=\delta_{\mathrm{A}}-\delta_{\mathrm{B}}=(\sqrt{-3} / 2) C \sin (2 \alpha) \tag{4}
\end{equation*}
$$

torsion angle for $\mathrm{Cr}-\mathrm{N}-\mathrm{C}-\mathrm{C}(\mathrm{O})$ and C is a constant including the spin density. The appreciable difference in the inequivalent dihedral angles for the nta chelate rings in dinuclear complexes 3a, 3b and $8 \mathbf{b}$ (Tables 4 and 6) may lead to splitting of two Gring signals into three or four. However, only one set of G-ring
signal is observed for complexes 3a and 3b (Table 8). It is likely that the nta chelate conformations of the G rings are not frozen, but are averaged in solution. The hydrogen bonds between the tn and nta ligands do not seem to lead to retention of the nta chelate-ring conformations in solution.

On the other hand, the complexes with pyridine rings (6a-8a and $\mathbf{6 b - 8 b}$) show different spectral patterns. At lowest field, two signals for the G-ring deuterons appeared with equivalent intensities from $\delta-4.0$ to -14.0 [Fig. 5(b), Table 8]. This may arise from differences in the distances and angles between the

Table 8 Hydrogen-2 NMR chemical shifts for $\left[\left(\left[{ }^{2} \mathrm{H}_{6}\right] \mathrm{nta}\right) \mathrm{Cr}(\mathrm{OH})_{2} \mathrm{ML}_{4}\right]^{+}$complexes in aqueous solutions

Complex	δ (degeneracy)					$\Delta \delta_{\text {A, }}(\mathrm{G} \text { ring })^{a}$	
	R ring		G ring				
1a	$-10.6(2)^{\text {b }}$		$-10.6(2)^{\text {b }}$		-34.6(2)	24.0	
2a	-9.1(2) ${ }^{\text {b }}$		$-9.1(2){ }^{\text {b }}$		-33.7(2)	24.6	
3a	-12.5(2)		-9.0 (2)		-33.5(2)	24.5	
4a	-12.5(2)		-5.6(2)		-33.4(2)	27.8	
5a	-10.4(2)		-4.4(2)		-33.4(2)	29.0	
6a	-15.6(2)		-4.0(1)	-10.0(1)	-31.7(2)	27.7	21.7
7a	-23.6(2)		-6.0(1)	-10.0(1)	-32.1(2)	26.1	22.1
8a	-23.6(2)		-7.8(1)	-14.0(1)	-32.5(2)	24.7	18.5
c	-23.0(2)	-9.0(1)	-15.0(1)	-32.0(1)	-36.0(1)	27.0	17.0
1b	$-10.1(2){ }^{\text {b }}$		$-10.1(2)^{\text {b }}$		-28.8(4)	18.7	
2b	-9.4(2)		-6.0(2)		-27.2(2)	21.2	
3b	-10.3(2)		-7.0(2)		-28.7(2)	17.3	
4b	-12.7(2)		-7.7(2)		-28.1(2)	20.4	
5b	$-10.2(2){ }^{\text {b }}$		$-10.2(2)^{\text {b }}$		-27.5(2)	21.7	
6b	-14.0(2)		-4.0(1)	-9.5(1)	-26.8(2)	22.8	17.3
7b	-17.9(2)		-5.2(1)	-8.9(1)	-26.4(2)	21.2	17.5
8b	-18.1(2)		-7.5(1)	-10.6(1)	-27.1(2)	19.6	16.5
d^{1}	-18.0(1)	-8.1(1)	-14.2(1)	-28.0(1)	-34.0(1)	25.9	13.8

${ }^{a} \Delta \delta_{\mathrm{A}, \mathrm{B}}=\delta_{\mathrm{A}}-\delta_{\mathrm{B}}$; see text. ${ }^{b}$ Degenerate signal. ${ }^{c}\left[\left(\left[{ }^{2} \mathrm{H}_{6}\right] \mathrm{nta}\right) \mathrm{CrO}(\mathrm{OH}) \mathrm{Co}(\text { phen })_{2}\right]$ in $\mathrm{NH}_{4} \mathrm{Cl}-\mathrm{NH}_{3}$ buffered solution. ${ }^{d}\left[\left(\left[{ }^{2} \mathrm{H}_{6}\right] \mathrm{nta}\right) \mathrm{CrO}(\mathrm{OH})-\right.$ $\mathrm{Cr}(\mathrm{phen})_{2}$] in $\mathrm{NH}_{4} \mathrm{Cl}-\mathrm{NH}_{3}$ buffered solution.

Fig. 4 The UV/VIS absorption spectra of $\left[(\mathrm{nta}) \mathrm{Cr}(\mathrm{OH})_{2} \mathrm{ML}_{4}\right]^{+}$complexes in aqueous solution (a) 2a, (b) 2b, (c) 8a and (d) $\mathbf{8 b}$
oxygen atoms of the two G rings and the hydrogen atoms of the phen ligands in the two inequivalent G rings as seen in the crystal structure of $\mathbf{8 b}$. The $\mathrm{H} \cdots \mathrm{O}$ distances are 2.68 $[\mathrm{C}(7)-\mathrm{H} \cdots \mathrm{O}(3)]$ and $2.82 \AA[\mathrm{C}(28)-\mathrm{H} \cdots \mathrm{O}(5)]$, respectively (Fig. 3). The first is closer to the sum of the van der Waals radii for hydrogen and oxygen atoms ($2.6 \AA$). By such van der Waals contact interactions, the inequivalent G-ring chelate conformations are frozen in solution. In the μ-oxo complex [(nta) $\mathrm{Cr}(\mu$ -$\left.\mathrm{O})(\mu-\mathrm{OH}) \mathrm{M}(\text { phen })_{2}\right]$, moreover, the highest-field signal is separated into two components probably as a result of the pronounced non-bonding interaction.

The average torsion angles α of the two G rings, 34.2 and 33.6°, for complexes $\mathbf{3 a}$ and $\mathbf{3 b}$, give small differences between $\sin (2 \alpha), 0.929$ and 0.922 , respectively. Therefore, the shift difference of the ${ }^{2} \mathrm{H}$ NMR signals in the G ring between 3 a and 3b results from the different C values. Since the parameter C includes the spin density, these differences are caused by the decrease in the effective paramagnetic unpaired electrons owing to the antiferromagnetic interaction in the homometallic $\mathrm{Cr}^{\mathrm{II}}{ }_{2}$ complexes.

Influence of the Non-bridging Ligands on ${ }^{2} \mathrm{H}$ NMR Spectra.The ${ }^{2} \mathrm{H}$ NMR chemical shifts of the R-ring methylene
deuterons in the aliphatic amine complexes vary from $\delta-9.1$ to $-12.7(1 \mathbf{a}-5 a$ and $\mathbf{1 b}-5 b),-14.0$ and $-15.6(6 a$ and $6 b)$ for the amp ones and -17.9 to $-23.6(7 \mathbf{a}, 8 \mathbf{a}, 7 \mathbf{b}$ and $8 \mathbf{b})$ for the bipy and phen ones with all-aromatic nitrogen ligators. This is in accord with the variation in the ligands in the ML_{4} moieties as shown in Table 8.

Though the structure analyses suggest that the signals of the \mathbf{R} rings also split for complexes $\mathbf{3 a}, \mathbf{3 b}$ and $\mathbf{8 b}$ judging from the reported torsion angles $\alpha,{ }^{45}$ only one signal was observed for all the complexes. This implies that the R ring becomes planar in solution. From equation (4), the shift differences between each complex are caused by the variation of C or the spin density in the deuteron atom. The $\mathrm{Cr}(\mathrm{nta})-\mathrm{OH}$ bond lengths trans to the nta nitrogen atom vary with the L_{4} ligands. Those of the aliphatic diamine complexes $\mathbf{3 a}$ and $\mathbf{3 b}$ are significantly shorter (about $0.03 \AA$) than those of the aromatic diamine complex $\mathbf{8 b}$. This difference could affect the $\mathrm{Cr}-\mathrm{N}(\mathrm{nta})$ bond owing to the trans influence, though no significant change in the $\mathrm{Cr}-\mathrm{N}$ (nta) bond lengths was detected in the structural analysis. Therefore, the isotropic contact shift or the unpaired electron density of the deuteron nuclei in the R ring on the $\mathrm{Cr}_{2} \mathrm{O}_{2}$ plane increases with lengthening of the $\mathrm{ML}_{4}-\mathrm{OH}$ bond trans to the nta nitrogen atom. In other words, the ${ }^{2} \mathrm{H}$ NMR chemical shifts of the R ring

Fig. 5 The ${ }^{2} \mathrm{H}$ NMR spectra of $\left.\left[\left({ }^{2} \mathrm{H}_{6}\right] \mathrm{nta}\right) \mathrm{Cr}(\mathrm{OH})_{2} \mathrm{CrL}_{4}\right]^{+}\left[\mathrm{L}_{4}=\right.$ $(\text { en })_{2}($ a $)$ or $\left.(\mathrm{phen})_{2}(b)\right]$ and $\left[\left(\left[{ }^{2} \mathrm{H}_{6}\right]\right.\right.$ nta) $\left.\mathrm{CrO}(\mathrm{OH}) \mathrm{Cr}(\mathrm{phen})_{2}\right]$ (c)
in the $\left[{ }^{2} \mathrm{H}_{6}\right]$ nta ${ }^{3-}$ ligand are sensitive to the $\mathrm{M}-\mathrm{L}_{4} \pi$-bond interaction via the $\mathrm{L}_{4} \mathbf{M}-\mathrm{OH}$ bond in these dinuclear complexes through the six bonds ($D-\mathrm{C}-\mathrm{N}-\mathrm{Cr}-\mathrm{O}-\mathrm{M}-\mathrm{N}[(\mathrm{am}(\mathrm{m})$ ine $)]$.

Acknowledgements

We thank Dr. Norio Koine of Ehime University for providing the result of his structural study of $\mathrm{Cs}_{2}\left[\mathrm{Cr}_{2}(\mathrm{nta})_{2}(\mathrm{OH})_{2}\right] \cdot 4 \mathrm{H}_{2} \mathrm{O}$ prior to publication. We gratefully acknowledge support of this research by a Grant-in-Aid for Scientific Research (No.02453040) from the Ministry of Education, Science and Culture

References

1 J. Springborg, Adv. Inorg. Chem., 1988, 32, 55.
2 P. Andersen, Coord. Chem. Rev., 1989, 94, 47.
3 T. F. Tekut, C. J. O'Connor and R. Holwerda, Inorg. Chim. Acta, 1993, 214, 145; T. F. Tekut and R. Holwerda, Inorg. Chem., 1993, 32, 3196; J. Glerup, S. Larsen and H. Weihe, Acta Chem. Scand., 1993, 47, 1154; J. Springborg, Acta Chem. Scand., 1992, 46, 1047; R. Hotzelmann, K. Wieghardt, U. Flörke, H.-J. Haupt, D. C. Weatherburn, J. Bovinson, G. Blondin and J.J. Girerd, J. Am. Chem. Soc., 1992, 114, 1681; P. N. Turowski, A. Bino and S. J. Lippard, Angew. Chem., Int. Ed. Engl., 1990, 29, 811; H. Toftlund, O. Simonsen and E. Pedersen, Acta Chem. Scand., 1990, 44, 676; L. L. Martin, K. Wieghardt, G. Blondin, J. J. Girerd, B. Nuber and J. Weiss, J. Chem. Soc., Chem. Commun., 1990, 1767; P. Andersen, A. Dossing and S. Larsen, Acta Chem. Scand., 1990, 44, 455.
4 (a) T. Ama, H. Kawaguchi and T. Yasui, Bull. Chem. Soc. Jpn., 1987, 60, 1183; 1988, 61, 1141; (b) K. Okamoto, J. Hidaka, T. Ama and T. Yasui, Acta Crystallogr., Sect. C., 1991, 47, 2099; (c) T. Ama, T. Yonemura, H. Kawaguchi and T. Yasui, Bull. Chem. Soc. Jpn., 1994, 67, 410.
5 D. J. Hodgson, K. Michelsen, E. Pedersen and D. K. Towle, Inorg. Chem., 1991, 30, 815; P. Chaudhuri, M. Winter, H. -J. Küppers, K. Wieghardt, B. Nuber and J. Weiss, Inorg. Chem., 1987, 26, 3302.

6 J. Springborg and C. E. Schäffer, Acta Chem. Scand., Ser. A, 1976, 30, 787; Inorg. Chem., 1976, 15, 1744.
7 T. Fujihara and S. Kaizaki, J. Chem. Soc., Dalton Trans., 1993, 2521.

8 N. Koine, R. Bianchini and J. I. Legg, Inorg. Chem., 1988, 25, 2835.
9 S. M. Jørgensen, Z. Anorg. Chem., 1892, 2, 297.
10 P. Pfeiffer and O. Angern, Chem. Ber., 1927, 60, 308.
11 Y. Kojima, Bull. Chem. Soc. Jpn., 1975, 48, 2033.
12 R. S. Treptow, Inorg. Chem., 1966, 5, 1593.
13 A. M. Sargeson and G. H. Searle, Inorg. Chem., 1967, 6, 787.
14 K. Michelsen, Acta Chem. Scand., 1972, 26, 769.
15 K. Kashiwabara, K. Igi and B. E. Douglas, Bull. Chem. Soc. Jpn., 1976, 49, 1573.
16 M. Mori, Nippon Kagaku Zasshi, 1953, 74, 253.
17 E. Pedersen, Acta Chem. Scand., 1970, 24, 3362.
18 M. Nakano and S. Kawaguchi, Bull. Chem. Soc. Jpn., 1979, 52, 3563.
19 D. A. House and C. S. Garner, J. Am. Chem. Soc., 1968, 88, 2156.
20 K. Michelsen, Acta Chem. Scand., 1972, 26, 1517.
21 M. P. Hancock, J. Josephsen and C. E. Schäffer, Acta Chem. Scand., Ser. A, 1976, 30, 79.
22 TEXSAN - TEXRAY Structure Analysis Package, Molecular Structure Corporation, Houston, TX, 1985.
23 M. Nakahanada, K. Ino and S. Kaizaki, J. Chem. Soc., Dalton Trans., 1993, 3681.
24 L. Mønsted and O. Mønsted, Acta Chem. Scand., Ser. A. 1976, 30, 203.

25 M. Ardon and A. Bino, Inorg. Chem., 1985, 24, 1343; Struct. Bonding (Berlin), 1987, 65, 1; S. Larsen, K. B. Nielsen and I. Trabjerg, Acta Chem. Scand., Ser. A, 1983, 37, 833.
26 R. G. Geue and M. R. Snow, J. Chem. Soc. A, 1971, 1981; T. Nomura, F. Marumo and Y. Saito, Bull. Chem. Soc. Jpn., 1969, 42, 1016; H. V. F. Schousboe-Jensen, Acta Chem. Scand., 1972, 26, 3143; R. Nagao, F. Marumo and Y. Saito, Acta Crystallogr., Sect. B, 1973, 29, 2438: K. Matsumoto, H. Kawaguchi, H. Kuroya and S. Kawaguchi, Bull. Chem. Soc. Jpn., 1973, 46, 2424; G. Srdanov, R. Herak and B. Prelesnik, Inorg. Chim. Acta, 1979, 33, 23.

27 C. A. Green, N. Koine, J. I. Legg and R. D. Willett, Inorg. Chim. Acta, 1990, 176, 87
28 N. Koine, personal communication.
29 J. R. Bocarsly, M. Y. Chiang, L. Bryant and J. K. Barton, Inorg. Chem., 1990, 29, 4898.
30 U. Thewalt and M. Zehnder, Helv. Chim. Acta, 1970, 60, 2000.
31 F. A. Jurnak and K. N. Raymond, Inorg. Chem., 1972, 11, 3149.
32 P. Andersen, A. Døssing and K. M. Nielsen, Acta Chem. Scand., Ser. $A, 1986,40,142$.
33 G. H. Stout and L. H. Jensen, X-Ray Structure Determination, Macmillan, New York, 1968.
34 F. A. Jurnak and K. N. Raymond, Inorg. Chem., 1974, 13, 2387 : E. N. Dueslen and K. N. Raymond, Inorg. Chim. Acta, 1978, 30, 87; X. Solans, M. Font-Altaba, M. Montfort and J. Ribas, Acta Crystallogr., Sect. B, 1982, 38, 2899; X. Solans, M. Font-Altaba, J. L. Brianso, A. Solans, J. Casabo and J. Ribas, Cryst. Struct. Commun., 1982, 11, 1199.
35 J. T. Veal, W. E. Hatfield and D. J. Hodgson, Acta Crystallogr., Sect. B, 1973, 29, 12.
36 R. P. Scaringe, P. Singh, R. P. Eckberg, W. E. Hatfield and D. J. Hodgson, Inorg. Chem., 1975, 14, 1127.

37 K. Kaas, Acta Crystallogr., Sect. B, 1976, 32, 2021.
38 J. Glerup, D. J. Hodgson and E. Pedersen, Acta Chem. Scand., Ser. $A, 1983,37,161$.
39 D. J. Hodgson, M. H. Zietlow, E. Pedersen and H. Toftlund, Inorg. Chim. Acta, 1988, 149, 111.
40 J. Springborg and C. E. Schäffer, Inorg. Synth., 1978, 18, 75.
41 J. Springborg and H. Toftlund, Acta Chem. Scand., Ser. A, 1976, 30, 171; J. Chem. Soc., Dalton Trans., 1976, 1017.
42 J. Springborg, Acta Chem. Scand., Ser. A, 1978, 32, 31.
43 J. Springborg and H. Toftlund, Acta Chem. Scand., Ser. A, 1979, 33, 31.

44 Y. Inamura and Y. Kondo, Nippon Kagaku Zasshi, 1953, 74, 627.
45 S. Kaizaki and M. Hayashi, J. Chem. Soc., Dalton Trans., 1989, 1947.

Received 16th November 1994; Paper 4/06987K

[^0]: \dagger Supplementary data available: see Instructions for Authors, J. Chem. Soc., Dalton Trans., 1995, Issue 1, pp. xxv-xxx.

